Transborder Ethnic Kin and Civil War*

August 24, 2012

Research Note prepared for *International Organization*

Lars-Erik Cederman
ETH Zürich lcederman@ethz.ch

Kristian Skrede Gleditsch
University of Essex, ksg@essex.ac.uk & Peace Research Institute Oslo

Idean Salehyan
University of North Texas, idean@unt.edu

Julian Wucherpfennig
ETH Zürich, wucherpfennig@icr.gess.ethz.ch
Abstract:

A series of studies has shown that civil wars are caused not only by factors inside countries, but also by effects operating across state borders. Whereas a first wave of quantitative studies demonstrated that such effects make the “closed-polity” assumption untenable, more recently researchers have identified particular causal mechanisms driving conflict. Despite these recent advances, a central puzzle remains unresolved, namely why ethnic groups that at least in theory could count on support from large transborder ethnic kin (TEK) groups often have remained surprisingly peaceful, such as the stranded Russian populations in the “near abroad.” We propose a theoretical framework that extends the analysis from the primary dyad between the incumbent and the challenger group by adding a secondary dyad that pits the incumbent against the TEK group. We postulate a curvilinear effect of the TEK group’s relative size on conflict onset. Using a new dataset on transnational ethnic links, we find that that the risk of conflict increases within the middle range of the size spectrum, consistent with our main hypothesis. This means that large TEK groups have a conflict-dampening effect, provided that they control their own state. Excluded TEK groups, however, are not associated with lower conflict probabilities.

Beyond the clear importance of domestic opportunities and grievances, civil wars are often influenced by the wider international environment. A series of recent studies has shown that such violence is caused not only by factors inside countries, but also by effects operating across state borders. Whereas a first wave of quantitative studies demonstrated that such effects make the “closed-polity” assumption untenable, more recently researchers have identified particular causal mechanisms driving conflict, including the role of transborder ethnic kin (TEK) in conflict
processes. In contrast to earlier contributions to this literature, which tended to stress identity as the key motivating factor, contemporary scholarship typically highlights how the conjunction of ethnicity and power politics increases the risk of conflict, suggesting that “identity politics is often more about politics than about identity.”

Despite these recent advances, a central puzzle remains unresolved, namely how ethnic groups that at least in theory could count on support from large TEK groups often have remained surprisingly peaceful. The most prominent dog that failed to bark in this sense are the Russians in the “near abroad.” There was widespread anticipation that the Russian diasporas stranded in former Soviet republics after the collapse of the Soviet Union in the early 1990s would resort to violence, but these communities have remained relatively calm. However, the picture looks entirely different if we consider the Albanians in the former Yugoslavia, or the Armenians in Azerbaijan. These groups have been involved in major fighting with active support from TEK groups. Given a similar pattern of domestic marginalization and cross-border ethnic kin, why then do some groups rebel while others do not?

In this research note we seek to ascertain whether there is any systematic link between the transnational ethno-demographic balance and the probability of conflict. We conjecture that the effect is not linear: as the size and power of the TEK group rises, conflict should be more likely, but very strong kin groups—such as the Russians—can in fact deter conflict. Our argument has been anticipated by others. In an article on “hypotheses on nationalism and war” that appeared shortly after the end of the Cold War, Van Evera proposed the existence of such a curvilinear effect. Offering a more thorough theoretical derivation, Van Houten addressed the same puzzle, arguing
that large external states controlled by TEK groups could have a pacifying effect on ethnic politics. Yet, the author himself admits that his study should be seen as a plausibility probe rather than a definitive test, since the evidence is limited to selected case studies. Thus, almost two decades after the publication of Van Evera’s initial conjecture, it remains uncertain if the postulated conflict-reducing TEK effect holds.

We test whether the curvilinear proposition applies more generally. Progress in data collection now allows us to evaluate this proposition systematically across a large number of cases. Drawing on a new transnational extension to the Ethnic Power Relations (EPR) dataset, we find strong quantitative support for the hypothesis. Indeed, the propensity of conflict is highest for TEK groups with intermediate relative sizes. As “power parity” theories would expect, external groups that have approximately the same size as the incumbent groups tend to see the most conflict. However, there are important differences as regards the TEK group’s own power status. Contrary to common fears about the dangers of irredentism, our results show that if transnational communities happen to control their respective states, this influence has a conflict-dampening impact for large groups. Where the TEK group is stateless, however, one cannot count on such a reduction of conflict risk.

We first review the literature on the influence of TEK. We then derive our hypotheses before introducing the data and measures used in the empirical analysis. Subsequently we introduce our results and discuss additional section sensitivity analyses. We conclude by discussing the theoretical ramifications of our analysis.
The literature on transborder ethnic kin and conflict

There is little consensus in the literature with regards to how TEK influence civil war outbreak. In fact, virtually all conceivable causal relationships have been proposed at some point or another, including both positive and negative influences, as well as no connection at all. Some studies argue that TEK groups have offensive motives linked to ethnic nationalism and postulate a positive effect on conflict. In particular, aggressive interventions driven by irredentism could trigger a spiral of escalating tensions on both sides of the border. It is not difficult to find examples of such border-transgressing processes in the wars that led to the breakup of the former Yugoslavia. Although most of this literature relies on qualitative evidence, some scholars have conducted quantitative tests, usually based on the Minorities at Risk data that generally detect a positive impact on conflict exerted by TEK groups.

From the vantage point of bargaining theory, Cetinyan contends that group sizes and transnational kin groups should not influence the probability of conflict onset. This interpretation recognizes that demands vary with a groups’ demographic weight, but rejects any implications for the outbreak of violence. Potential threats from external kin, Cetinyan argues, should be reflected in domestic bargaining processes as groups with strong TEK ties receive greater concessions from the state. Cetinyan’s analysis is creative, but there are at least two reasons to doubt his theoretical and empirical null effect. First, the restricted sample of groups in the MAR data, which are by construction limited to threatened minorities, make them less suitable for general tests of the impact of demographic size. Second, Cetinyan’s model rules out the possibility that relative group size could be correlated with uncertainty. By contrast, a number of
scholars postulate a curvilinear relationship between the two, since strategic
misrepresentation is most effective at parity.9 We present a similar argument below.
In fact, similar non-linear effects have postulated in the conflict literature with respect
to other causal effects, such as the influence of regime type10 and ethnic
fractionalization.11

In an attempt to overcome some of the sample restrictions associated with the MAR
data by relying on alternative, group-level data, Cederman, Girardin and Gleditsch
find that TEK groups increase the probability of internal conflict by shifting the shape
of the observed effects of the power balance between the groups associated with the
rebels and the incumbent government.12 While innovative in its use of geographic
information systems, their article has a limited scope in several respects. First, the
GREG data on ethnic groups depend directly on the Soviet *Atlas Narodov Mira*,
which are defined primarily based on language, and may not correspond to the
relevant identities.13 Moreover, the data are from the 1960s and could thus said to be
outdated (even though ethnic settlement patterns are surprisingly stable over time).
Second, their analysis is limited to Eurasia, thus leaving cases in Africa and the
Western Hemisphere outside the analysis. Third, and most importantly, their model
does not factor in the size of the TEK group itself, and therefore does not speak to the
size puzzle that is the main focus of this article.

In an early discussion of “hypotheses on nationalism and war” mentioned above, Van
Evera develops a subtle argument stating that TEK groups will be less likely to
intervene if rescue is either impossible or relatively easy. It is, instead, “in-between
situations … that are most dangerous.” However, Van Evera’s article never moves beyond listing hypotheses accompanied by selected case illustrations.

Relatedly, Van Houten offers a more sophisticated attempt to explain the relative peacefulness of the Russian near abroad and similar cases. Focusing on kin states, referred to as “reference states,” Van Houten extends Fearon’s theory of credible commitments from minority-majority relations to transborder actors. Noting that Fearon’s argument overpredicts violence in cases such as the Baltic states, he argues that external relations may pacify domestic settings under specific conditions. It is true that irredentist intensions may exist among strong states, in which case conflict is very likely. However, ceteris paribus, a stronger reference state should stabilize minority-majority relations: “the presence of a militarily strong but only moderately irredentist reference state is most likely to overcome the commitment problem and prevent ethnic violence.” Thus, strong external kin states are in a much better position to make credible threats to intervene than their weaker counterparts:

On the one hand, if it is known that the reference state is likely to intervene in the new state if the minority is oppressed, then the ruling majority in the new state has an incentive to protect the minority. This threat allows the majority to credibly commit to do this. On the other hand, if the reference state is too aggressive, it may induce a war with the new state.

Recognizing the difficulties of testing an argument that hinges on intensions, Van Houten limits the application of his game-theoretic model to a small number of cases in the Eastern Europe: “I make no attempt to actually prove the correctness of the
model; rather, I try to show its plausibility.”19 Thus, building on, and further developing, Van Houten’s ideas, we attempt to go beyond establishing plausibility by testing our hypotheses systematically across a large number of cases.

Theorizing the effect of transborder ethnic kin

Following pioneering conceptual work by Weiner20 and Brubaker,21 we start our theoretical derivation of the TEK effect by identifying the ethno-nationalist triad as the critical constellation of actors within which border-transgressing influences on conflict operate. An ethno-nationalist triad can be conceptualized as an extended center-periphery configuration by adding the TEK group to the primary dyad, which involves the group challenging the power of an incumbent ethnic group. Through the addition of a TEK group on the challenger’s side, the incumbent is now faced with an additional, potentially opposed actor in a secondary dyad. The presumably supportive relationship between the TEK group and the challenger constitutes the third leg of the triad. Figure 1 illustrates the full triadic actor constellation, including the primary and secondary dyads.

[Figure 1 about here]

By referring to incumbents, challengers and TEK groups, we avoid the confusing and potentially misleading terminology labeling the first two actors as majority and minority groups. Rather, we highlight the importance of the ethno-political power. As illustrated by many cases of minority rule, including Apartheid South Africa and
today’s Syria, the incumbent group at the political center may be a numerical minority and the excluded challenger group(s) in majority. As we will argue, such situations are especially conflict prone.

Although our theoretical framework could in principle be extended beyond neighboring states, we focus on such relations for the simple reason that external intervention is much more feasible in terms of logistics under such circumstances. Indeed, long-distance nationalism involving diaspora has also been listed as a possible source of conflict, as has funding of rebel campaigns in the Third World through diaspora of migrants in the US. These conflict mechanisms are different from our concern, where we focus entirely on transborder ethnic kin. It is true that demonstration effects may inspire protest across vast distances. However, few countries have the ability to project force across long distances, and such kin group connections are less relevant for threat perceptions. Moreover, TEK groups in adjacent countries can more readily offer support to their kin across the border, for example by helping to set up rebel sanctuaries.

Furthermore, it is worth noting that our actor constellation is based on ethnic groups and focuses on mechanisms governed by demographic conditions. Yet, the agency of ethnic groups as collective actors has often been questioned in the literature. In the classical treatment of the collective action, Olson expects freeriding to undermine the effectiveness of efforts by large group. More recently, experts on conflict and ethnicity have criticized the reliance on ethnic groups as the unit of analysis. For sure, many ostensible groups may not live up to the full “groupness” of such units because their outer boundaries are highly fluid and their political decision making
may be so muddled that no rational or coherent agency can be said to exist at the
group level. For this reason, the cohesion of ethnic groups should be seen as a
variable, at least in principle. In most cases, however, there are still good reasons to
expect ethnic groups to be relatively cohesive and sufficiently stable to warrant
conflict analysis of the type proposed in this paper. Ultimately, if our assumption of
groups as units or analysis turns out to be deeply flawed, it should be impossible to
find any clear empirical results based on ethnic groups as units of analysis.

Since demographic group size is relatively easy to measure, and tends to be
exogenous to conflict except under extreme cases of ethnic cleansing, we will rely on
this dimension to reflect power in our theory. For sure, there are instances where the
participants of conflict processes constitute tiny fractions of the group’s population,
such as ruthless warlords and armed bands, but we expect the size of the group to be
relevant to conflict onset in most cases, both in terms of potential resources and
overall support or legitimacy as a share of a country’s population.

Our main task, then, is to study the probability of violence within the primary dyad
and to what extent this conflict process involves the TEK group through the
secondary dyad. Assuming that a nationality conflict breaks out between the
incumbent group(s) and the challenger, we derive the conditions of conflict as a
function of the conditions within the primary and secondary dyads.

Analyzing the conditions of conflict within the primary dyad

At least since the French Revolution, state sovereignty, and political legitimacy more
widely, have been defined through the popular will. Wherever alien rule applies,
leaders of the excluded groups are likely to harbor grievances against the incumbent, state-controlling elites.27 Under specific conditions, these tensions increase the probability that violence will be resorted to by the disadvantaged and excluded groups.28 Most obviously, the more pronounced the frustrations felt by the group in question, the more likely armed resistance becomes, especially where the path to peaceful change is blocked.

However, beyond popular grievances and demand for justice, the likelihood of violent conflict could also be influenced by the power balance within the primary dyad. After all, mere frustration does not suffice to challenge the state’s power; violent change requires resources and organization in addition to motive.29 While Olson’s classical theory of collective action postulates a negative relationship between group size and coordinated action at the group level because of the erosion of solidarity in large groups, other authors adopt a less radically individualist perspective by stressing how cognitive,30 emotional,31 and organizational mechanisms32 allow group leaders to tap resources in proportion to the size of the group in question.

Drawing on the reasoning presented by Cederman, Buhaug and Rød,33 we postulate a positive, monotonic relationship between group size and conflict for reasons relating to both opportunities and motivations. Assuming at least minimal cohesion, other things being equal, then groups with larger populations should be able to mobilize more resources to challenge the government’s power, in terms of potential fighters and other types of material support.
We also expect demographic scope to be correlated with motivations to the extent that larger groups can claim more legitimacy within a political system, both in terms of actual votes in democracies or potential influence in authoritarian systems. In the modern, nationalist era, minority rule should be especially problematic. Wherever majorities—or at least large segments of the population—are deprived of political power, fundamental principles of democracy and national self-determination are by definition violated. Focusing on the relative size of the challenger group compared to the size of the incumbent groups, we are now ready to state our first hypothesis:

Hypothesis 1. The probability of conflict increases with the relative size of the challenger group in the primary dyad.

Analyzing the conditions of conflict within the secondary dyad
We are now ready to consider the main concern of this research note: the secondary dyad’s influence on internal conflict. Before discussing the different ways that the TEK group’s size can affect the propensity of political violence, we start by considering a categorical effect. Such a formulation would be compatible with a strictly essentialist interpretation of ethnic kin that is unrelated to power relationships. As a reflection of strong ethnic solidarity, all TEK groups should be highly motivated to intervene. According to this approach, such groups are motivated by “reasons of affinity and sentiment rather than ... power or more hard-headed cost-benefit analyses.”34 Based on this essentialist logic, we derive the following hypothesis:

Hypothesis 2. The probability of conflict increases in the presence of a TEK group.
Nevertheless, we expect this hypothesis to be false. Although clearly emotionally loaded, ethnic politics is as much about power and politics as it is about ethnic solidarity:

Disputes over the allocation of scarce resources, competing visions of foreign policy directions, domestic political contests, and other prosaic features of political life frequently trump any putative duty that political elites might feel toward individuals who share their language or culture beyond their own frontiers.

Whether orchestrated by state-owning or state-seeking ethnic kin, interventions in transborder conflicts are a risky business that can have massively negative consequences for the TEK group in question. Indeed, it is not surprising that quantitative studies have generally failed to find support for the simple hypothesis that the presence of a TEK group by itself influences the risk of conflict.

An alternative account takes power politics more seriously by letting the probability of conflict increase with the relative demographic weight of the TEK group compared to the incumbent. The larger the group, the more confident it will be that its intervention will contribute to the successful challenge of the government in the primary dyad without exposing it to inordinate risks. Similarly, Jenne argues that powerful secondary dyads encourage groups in the primary dyad to radicalize and articulate larger demands, which can lead to violence. This logic runs parallel to
that of H1 in the primary dyad by using relative demographic weight as a rough measure of the dyadic power balance:

Hypothesis 3. The probability of conflict increases with the size of the relative TEK group in the secondary dyad.

There are few examples of empirical studies measuring power relations in the secondary dyad and those that do typically find no proportional effect. For example, in their quantitative investigation of irredentism, Saideman and Ayres do not detect any influence of relative group size, which is also in line with Cetinyan’s findings. Nonetheless, we include this hypothesis and test it using our new data resource.

But there are also important theoretical reasons to discount this hypothesis. H3’s monotonic effect of TEK group size fails to account for the puzzle of the Russian near abroad, because it overlooks the strategic nature of the secondary dyad. As the size of the TEK group increases, the challenger in the primary dyad will have access to more resources, but the incumbent regime should also take this into account when bargaining with the group. We have postulated a linear effect of group size on conflict in the primary dyad, but there are good reasons to believe that such a relationship needs to be amended when it comes to the influence of the secondary dyad. Why should large, powerful TEK groups be able to “protect” their kin, but large groups in the primary dyad be more associated with conflict? Deviating somewhat from Van Houten’s emphasis on commitment problems, we propose two causal mechanisms that generate the same relationship between the size and conflict variables.
First, large challengers in the primary dyad are relatively unlikely to extract bargaining concessions by threatening ruling minorities. Majority groups challenging minority incumbents will remain excluded from state power unless there are exceptional circumstances that make small ruling coalitions unstable. Some small ruling coalitions—such as the White Apartheid government in South Africa—established their dominance through successful coercion, and managed to cling to power during decades. Oppressive incumbents are unlikely to compromise with challengers as they fear that concessions will threaten their long-term survival and the benefits of rule. Going down the reform path may lead to the dissolution of the regime at best, and exile, imprisonment, or death at worst. Thus, elites defending minority rule will be inclined to rely heavily on coercion to stifle challenges to their supremacy.

However, such an uncompromising attitude may be much less viable if overwhelming external groups get involved. While incumbents have greater means to maintain control domestically, transnational actors are inherently more difficult to police and coerce since they can mobilize resources beyond the shadow of repression. Because of the potential threat posed by such interventions, we would expect incumbent regimes to be mindful of ethnic opposition groups’ respective “homelands.” In other words, large domestic challengers—while potentially threatening—can be successfully controlled by the state’s coercive apparatus, but large external challengers are much more difficult to deal with.
This type of caution should increase with the TEK groups’ size relative to the incumbent group. Put differently, the latter’s willingness to risk violent conflict should be a decreasing function of the TEK group’s size. Yet since the probability of conflict results from both opportunity and willingness, the combination (i.e., multiplication) of external resources and external treats produces a curvilinear effect. For small TEK groups, the conflict propensity would be close to zero since these groups would make little difference even if they intervene. Where the TEK groups are relatively large, however, states will be more constrained in their behavior because of the deterrent effect of a possible intervention.

Drawing on bargaining theory, there is a second reason to expect the mid-range of TEK sizes to be more conflictual. Originally applied by Blainey to interstate relations, this argument hinges critically on uncertainty and strategic incentives to misrepresent one’s true strength. According to this reasoning, conflicts are especially likely to break out where the power balance is roughly even. Rough parity makes it difficult for the parties to assess who would prevail in case of combat, and so attempts to misrepresent gain significance. Conflict may then occur as the result of information problems leading to bargaining failure. While this reasoning has generally not been extended to civil wars, which are typically thought to be caused by commitment problems, there are clear reasons to believe that uncertainty could be a cause of conflict in such settings. For example, Walter points to obvious sources of uncertainty, such as the sources of rebel financing and governmental resolve, to which one might add the extent of popular mobilization on either side.
Yet, the lack of information should be even more pronounced as regards the possible involvement of TEK groups. Transnational interactions will tend to be much less transparent than domestic politics. This fundamental information asymmetry is especially severe for the incumbent, because its intelligence services are likely to encounter much more resistance in their attempts to gather information about the resources and intentions of foreign groups. To some degree, the situation resembles the difficulties surrounding extended deterrence in international relations, which is deemed to be especially challenging to handle. Primarily the challenge derives from the uncertainty and lacking credibility surrounding third parties’ propensity to intervene in defense of proxy states. Thus, it can be surmised that both in terms of estimating the capability balance in the TEK group’s favor and its willingness to intervene, considerable uncertainties will be present, especially when approaching power parity. Furthermore, these uncertainties should dwarf the corresponding sources of ambiguity in domestic politics.

We are thus ready to derive our main hypothesis regarding the functional form of the TEK effect:

Hypothesis 4. The probability of conflict follows an inverted U-shape for the relative size of the TEK group in the secondary dyad.

So far, our hypotheses have said nothing about the influence of TEK links on conflict compared to situations that feature no kin at all. We argue that whether the TEK group is included in, or excluded from, executive power in their own state exerts a mediating effect. The most straightforward argument focuses on the superior power
of state-controlling TEK. Other things being equal, we would expect TEK groups that control a state to be more powerful. Yet as we have argued above, the relative power balance in the secondary dyad should constrain conflict as TEK groups become more threatening. While we focused on power-as-population above, control of a state and its military apparatus should augment power even further. Thus, while ethnic Russians and ethnic Chinese are numerically large in global terms, they are even stronger than their size alone would suggest as they control powerful states. Marginalized TEK groups, on the other hand, may be willing and able to mobilize resources for their kin in their primary state. Yet, there will be considerable uncertainty over the resources and support that they can garner as their capabilities are unknown and resource pools are insecure. TEKs that control states usually operate through official diplomatic channels and have known resources streams and capabilities, which bolster credible threats and reduce bargaining uncertainty.

In addition, we must consider the TEK group’s willingness to intervene. Incumbent groups have much more to lose than stateless groups, especially in the case of multi-ethnic polities that could be seriously destabilized by actions that undermine the sanctity of borders. International norms of territorial integrity applying to states, rather than to non-state actors, should also restrain incumbent groups from interfering in the internal affairs of neighboring states. In contrast, TEK groups without access to power, such as the Kurds, are less bound by such rules, and are generally more likely to have experienced military action as a consequence of their marginal position.

In short, TEK groups that control a state can “talk softly and carry a big stick”. They are more able to intervene given their control over military forces and these credible
threats should be reflected in bargaining in the primary dyad. They may be more reserved in their use of force, given international norms against war, but can still bring the power of the state to bear in diplomatic relations. Marginalized TEK groups on the other hand, do not face similar constraints. Support for their kin may be uncertain and difficult to mobilize since they do not have the same military capabilities. For these reasons, large included TEK groups tend to deter conflict, while excluded TEK groups can foster bargaining uncertainty and promote conflict. Thus, we state our final hypothesis:

Hypothesis 5. The conflict-dampening effect occurs for relatively large TEK groups that are included, and not for those that are excluded.

Data

Assessing our hypotheses empirically require suitable data on ethnic groups and their transnational connections in a wide and unbiased sample. Thus, we extend the Ethnic Power Relations (EPR) dataset to encompass transborder links. The coding of EPR relies extensively on expert input, both through and online survey and workshops. In its current version, that we refer to as EPR-ETH, the dataset contains information about politically relevant ethnic groups around the world from 1946 through 2009. Political relevance is defined by including groups that are active in national politics and/or directly discriminated by the government.
In agreement with constructivist principles, the ethnic identities are allowed to vary over time, such that the political relevance or the main level of political identification may move from one level to another. For each group and time period, we provide the demographic weight and access to national executive power. The dataset divides power status into three main categories depending on whether the group in question (1) controls power alone, (2) shares power, or (3) is excluded from power. Whereas groups that fall into the two first categories are classified as included, those that belong to the last category are excluded.

The EPR classification offers sub-categories for each of the three main status categories:

1. Included groups that rule alone can be either in monopoly or be dominant depending on whether the control is total or allows for “token” representation;
2. Included groups that share power play either a senior or junior role measured by their absolute influence over the cabinet,
3. Excluded groups are either powerless if their access to power is blocked, discriminated if the exclusion is systematic and targeted, and autonomous or separatist, if they have been granted, or unilaterally secured, regional autonomy respectively.53

Most importantly for our purposes, our dataset offers an important extension covering transnational groups between ethnically related kin groups. Since the coding of EPR groups is country-specific, there is no automatic way of identifying such connections. We therefore decided to code TEK links based on nominal identification by matching group names including the possibility of synonyms for groups with shared languages.
Thus, for example, Swiss Italians are linked to the Italians through the TEK group for all Italians. There is of course no guarantee that matching names will yield politically relevant bonds, and it is far from obvious whether Swiss Italians automatically will identify with “Italian Italians”. However, this method is less afflicted by bias than attempts to code constructivist interpretations based on partial information (see the Appendix for a full listing of all TEK groups).54

The coders were asked to identify all ethnic groups that appear in more than one country and to give them a special TEK code that differs from the country-specific group identifiers. Groups that appear only in one country were not given any TEK code. Because EPR also features “umbrella groups” composed of several ethnic subgroups. For example, in Mali the umbrella group “blacks” includes ethnic Mande, Peul, Voltaic, and others. In these cases, the composite group can be associated with more than one TEK code, with three as the maximum number of links allowed in the dataset. Finally, before entering the analysis, TEK connections featuring groups from non-contiguous countries were removed from the dataset in agreement with the reasoning presented in the previous section.

Variables

The next step is to introduce our main variables. Throughout this paper, we rely on a dependent variable that is based on a group-level coding of the Uppsala Conflict Data Program’s Armed Conflict Dataset.55 The resulting coding assures that each conflict
onset is mapped to the corresponding EPR group provided that the rebel organization expresses an aim to support the ethnic group and members of the group in question participate in combat.56 The onset variable is coded one for a group-year during which a conflict started and zero otherwise. We exclude observations with ongoing conflict.

We then proceed to the independent variables. Assuming that the group’s population is G, the TEK group’s population K,57 and the population of the incumbent I,58 we operationalize the main independent variables as follows:

- Relative group size $g \in (0,1)$ in the primary dyad is defined as $G / (G+I)$ if the group is excluded and as G/I if the group is included (since the group left the governing coalition, which is now of size $I-G$).
- Relative TEK size $k \in [0,1)$ in the secondary dyad is defined as $K / (K+I)$.
- Relative size for TEK groups that are state controlling and stateless, k_{INCL} and k_{EXCL} respectively, are computed based on TEK group populations from either group category.
- We also employ a TEK dummy variable, which is coded 1 if the group has at least one TEK group, and 0 otherwise.

We control for a number of group-level properties, including:

- Dummy variables for the EPR categories: *junior*, *powerless*, *discrimination*, *regional* and *separatist autonomy* (using senior membership in power sharing as the reference category, while dropping all cases pertaining to *monopoly* and *dominant* status since groups cannot challenge themselves).
• Dummy variable *downgraded* indicating if the group suffered a loss of EPR status during the last two years.

• Count variable *number of previous conflicts* showing the number of conflicts the group has experienced since 1946 or the independence of the country.

Finally, we introduce a number of variables to control for country-level properties:

• Dummy variable *ongoing conflict* indicating if there was an ongoing conflict involving any other group in the country during the preceding year.

• Logged *GDP per capita* of the country, lagged.

• Logged *population size* of the country, lagged.

• Number of years since last conflict, as a nonlinear function, based on natural splines with three knots.⁵⁹

Results

Having described the data and defined our variables, we are now ready to present our main results. The sample encompasses all politically relevant EPR groups from 1946 through 2009, which amounts to 28,302 group years of which 205 include conflict onsets (except those groups that control the government through monopoly or dominance). Relying on robust country-clustered standard errors, we conduct all analysis with logit models using the onset of ethno-nationalist conflict at the group level as the dependent variable.
Table 1 introduces five models that test successively the hypotheses H1 through H5. Starting with an evaluation of H1, Model 1 confirms that larger relative group sizes in the primary dyad increase the probability of conflict. The control variables behave as anticipated. The group’s power access is negatively related to conflict. Downgraded groups and those with a history of conflict are more likely to experience violence. At the country level, GDP per capita has a negative and significant effect, but the population variable fails to reach significance.

[Table 1 about here]

The remaining models assess the conditions within the secondary dyad. As a first step, Model 2 introduces a dummy variable indicating whether the group has TEK. Since the effect is indistinguishable from zero, we reject H2 in keeping with our theoretical expectations. The introduction of the TEK dummy variable does little to affect the other coefficients. Focusing on H3, Model 3 evaluates whether the probability of conflict increases monotonically with the relative size of the TEK group. We retain the TEK dummy, which now serves as an intercept for the linear effect for groups without TEK, where the size is set to zero. Again, the estimate of the size effect is far from significant, although this time positive. In agreement with our theoretical anticipation, we reject H3 as well.

Our next task is to test the postulated inverted U-shaped curvilinear relationship between TEK size and conflict. Since the indicator for the demographic balance ranges from 0 to 1, both terms should be of roughly equal magnitude and the quadratic term should negative if the hypothesis is correct. In support of H4, the
estimates of Model 4 reveal that while the monotonic effect of relative group size in the primary dyad remains strong, the relative size of the TEK group influences conflict propensity in an inverted U-shaped fashion. Encouragingly, both the linear and square terms are strongly significant, with the former being positive and the latter negative. Using 90 percent confidence intervals, Figure 2 plots the predicted probability of conflict as a function of relative TEK size, indicating that if the other variables are held at their means, conflict propensity increases from around 0.003 to as much as 0.007 per group and year if the relative TEK size shifts from zero to parity. Illustrating the distribution of the observations, the rug plot along the x-axis of Figure 2 demonstrates considerable variation in the observed relative size of TEK groups.

[Figure 2 about here]

Our analysis continues with an evaluation of H5, which considers the separate effect of different types of TEK groups compared to the non-TEK baseline. The results of Model 5 suggest that both included and excluded TEK groups produce a curvilinear effect on conflict onset. However, it is difficult to compare the net influence of both these variables based on the coefficients themselves. We therefore refer to Figure 3, which displays the respective marginal TEK effects in two separate panels, with the left indicating included TEK groups and the right corresponding to excluded groups. The figure thus depicts the first differences in predicted probabilities for given levels of relative TEK size and status compared to groups without TEK. It immediately becomes clear that the effect differs significantly between the two types of TEK groups. In support of H5, the graphs tell us that for comparable TEK sizes, the
conflict propensity is considerably higher for excluded TEK groups than for the included ones. In fact, the conflict restraining effect can only be observed for state-controlling TEK groups. For very large relative group sizes, the effect appears to be significant since the error bands do not intersect zero in that range. By contrast, the marginal effect of excluded TEKs is generally positive and statistically significant for the intermediate size range, but becomes indistinguishable from the corresponding non-TEK situation for extreme values of the size spectrum. However, despite a falling tendency for large groups, the net effect never becomes conflict-dampening. Echoing the findings of Ayres and Saideman, we conclude that irredentism may be much less important as a trigger of civil wars than often expected, although we cannot exclude the possibility that other types of violence, such as interstate disputes and wars, could be triggered by included TEK groups. Indeed, our results indicate that the conflict-dampening influence appears to be limited to included TEK groups, in line with Van Houten’s account of the relatively peaceful Russian diaspora.

[Figure 3 about here]

In order to increase our confidence in our findings, we conducted a number of sensitivity tests, presented in an online appendix. We find that the results hold for different parts of the world and are robust to several potentially confounding factors.

Conclusion

Thanks to improved data and analysis, this study has been able to provide considerable empirical support for conjectures that have so far only been postulated
theoretically, or shown to hold for selected cases. In agreement with earlier studies, we show that as the relative strength of ethnic kin groups increases, the risk of internal conflict also grows, but only up to a certain point. After this point, further increases in the ethnic kin’s demographic weight have a dampening impact on conflict propensity. Whereas the former part of the relationship is quite straightforward, the latter part is much less obvious, but nevertheless of great importance. Indeed, it is this conflict-reducing influence of large “homelands” that enables us to resolve our main puzzle relating to the relative peacefulness of the Russian diaspora. It is not surprising that the calming influence is limited to included, rather than excluded, TEK groups, such as the Russians in Russia. More generally, our study offers a powerful answer to those who have played up the risks of irredentism. Our counter-intuitive finding makes sense as soon as one realizes that large, state-owning TEK groups are less likely to resort to risky border-crossing adventures, and their presence put pressure on incumbent states to treat their minorities with foreign kin in a more considerate way than would otherwise have been the case.

These findings do not imply that transnational politics is always more peaceful than domestic dynamics. In contrast to the conflict-inhibiting influence of large state-controlling TEK groups, we find exactly the opposite effect for intermediate size kin groups. Indeed, the probability of conflict hinges critically on the power status of the TEK group. Stateless communities, such as the Kurds (outside Iraq), exhibit a much higher conflict potential compared to the within-country baseline. Thus, the pernicious effect of political exclusion has a tendency to spill over state borders. Since marginalized communities have little to lose at home, they also are more
willing to upset the status quo abroad in the name of ethnic solidarity and commonly felt grievances.

Although our main task has been to test empirically the curvilinear theoretical conjecture and to evaluate TEK groups’ net impact on conflict, our empirical analysis has important additional theoretical implications. For one, our analysis stresses the importance of considering non-linear specifications rather than merely postulating monotonic effects. But our study also has general relevance for substantive theory building. By introducing the conceptual distinction between primary and secondary dyads, we are able to unpack the “ethnic triad” originally introduced by Weiner, while at the same time going beyond analyses that studies the influence of ethnic kin as a dichotomous feature. Indeed, our results show that the power balance in the primary and secondary dyads affects the risk of civil war in potentially quite different ways. The central curvilinear finding for the secondary dyad dovetails nicely with international relations theory, especially the strands thereof highlighting the importance of uncertainty and deterrence. As mentioned, several studies using conventional balance-of-power theory have shown that the risk of conflict is the highest at power parity. However, we do not find strong evidence of such an inverted U-shape relationship in the primary dyad. It seems intuitive that the secondary dyad involves strategic considerations that have more to do with interstate relations than with domestic politics, especially since transnational relations can be expected to feature more uncertainty than domestic dyads. Yet, more research is needed to clarify the causal mechanisms operating in the primary and secondary dyads, as well as possible interdependencies between them.
References

Table 1. Main regression results

<table>
<thead>
<tr>
<th></th>
<th>Model 1 Onset</th>
<th>Model 2 Onset</th>
<th>Model 3 Onset</th>
<th>Model 4 Onset</th>
<th>Model 5 Onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel. Group Size</td>
<td>1.3885**</td>
<td>1.3807**</td>
<td>1.2713**</td>
<td>1.2622**</td>
<td>1.1783**</td>
</tr>
<tr>
<td></td>
<td>(0.3145)</td>
<td>(0.3131)</td>
<td>(0.3347)</td>
<td>(0.3404)</td>
<td>(0.3659)</td>
</tr>
<tr>
<td>TEK Group</td>
<td>0.1009</td>
<td>-0.0179</td>
<td>-0.4115</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1927)</td>
<td>(0.2092)</td>
<td>(0.2440)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. TEK Size</td>
<td>0.3441</td>
<td>4.2382**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.3306)</td>
<td></td>
<td>(1.3420)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. TEK Size, sq.</td>
<td>-4.2058**</td>
<td></td>
<td></td>
<td></td>
<td>(1.3620)</td>
</tr>
<tr>
<td>Excluded TEK Group</td>
<td>-0.1967</td>
<td></td>
<td></td>
<td></td>
<td>(0.2237)</td>
</tr>
<tr>
<td>Rel. TEK Size (excl.)</td>
<td>3.3767*</td>
<td></td>
<td></td>
<td></td>
<td>(1.6882)</td>
</tr>
<tr>
<td>Rel. TEK Size, sq. (excl.)</td>
<td></td>
<td>-2.6340</td>
<td></td>
<td></td>
<td>(1.9853)</td>
</tr>
<tr>
<td>Included TEK Group</td>
<td>-0.3549</td>
<td></td>
<td></td>
<td></td>
<td>(0.2852)</td>
</tr>
<tr>
<td>Rel. TEK Size (incl.)</td>
<td>4.5133**</td>
<td></td>
<td></td>
<td></td>
<td>(1.6719)</td>
</tr>
<tr>
<td>Rel. TEK Size, sq. (incl.)</td>
<td></td>
<td>-5.1434**</td>
<td></td>
<td></td>
<td>(1.6867)</td>
</tr>
<tr>
<td>Junior Status</td>
<td>0.8392</td>
<td>0.8415</td>
<td>0.7939</td>
<td>0.7823</td>
<td>0.7781</td>
</tr>
<tr>
<td></td>
<td>(0.5210)</td>
<td>(0.5207)</td>
<td>(0.5295)</td>
<td>(0.5248)</td>
<td>(0.5323)</td>
</tr>
<tr>
<td>Autonomy Status</td>
<td>1.1844*</td>
<td>1.2021*</td>
<td>1.1249</td>
<td>1.1647*</td>
<td>1.1097</td>
</tr>
<tr>
<td></td>
<td>(0.5758)</td>
<td>(0.5741)</td>
<td>(0.5840)</td>
<td>(0.5811)</td>
<td>(0.5852)</td>
</tr>
<tr>
<td>Powerless Status</td>
<td>1.4248**</td>
<td>1.4237**</td>
<td>1.3527*</td>
<td>1.3675*</td>
<td>1.3039*</td>
</tr>
<tr>
<td></td>
<td>(0.5294)</td>
<td>(0.5309)</td>
<td>(0.5430)</td>
<td>(0.5396)</td>
<td>(0.5458)</td>
</tr>
<tr>
<td>Discriminated Status</td>
<td>2.0008**</td>
<td>1.9905**</td>
<td>1.9315**</td>
<td>1.9273**</td>
<td>1.8952**</td>
</tr>
<tr>
<td></td>
<td>(0.5048)</td>
<td>(0.5075)</td>
<td>(0.5194)</td>
<td>(0.5162)</td>
<td>(0.5177)</td>
</tr>
<tr>
<td>Separatist Status</td>
<td>3.2109**</td>
<td>3.2137**</td>
<td>3.1275**</td>
<td>3.2512**</td>
<td>3.2108**</td>
</tr>
<tr>
<td></td>
<td>(0.6592)</td>
<td>(0.6609)</td>
<td>(0.6818)</td>
<td>(0.6625)</td>
<td>(0.6660)</td>
</tr>
<tr>
<td>Downgraded</td>
<td>1.5762**</td>
<td>1.5768**</td>
<td>1.5756**</td>
<td>1.5585**</td>
<td>1.5537**</td>
</tr>
<tr>
<td></td>
<td>(0.2935)</td>
<td>(0.2942)</td>
<td>(0.2950)</td>
<td>(0.2922)</td>
<td>(0.2898)</td>
</tr>
<tr>
<td>Number Previous Conflicts</td>
<td>0.5571**</td>
<td>0.5481**</td>
<td>0.5469**</td>
<td>0.5173**</td>
<td>0.5070**</td>
</tr>
<tr>
<td></td>
<td>(0.0972)</td>
<td>(0.0968)</td>
<td>(0.0959)</td>
<td>(0.0963)</td>
<td>(0.0933)</td>
</tr>
<tr>
<td>Ongoing Conflict, lag</td>
<td>0.3876</td>
<td>0.3903</td>
<td>0.3960</td>
<td>0.4421</td>
<td>0.4634</td>
</tr>
<tr>
<td></td>
<td>(0.2882)</td>
<td>(0.2856)</td>
<td>(0.2866)</td>
<td>(0.2864)</td>
<td>(0.2856)</td>
</tr>
<tr>
<td>GDP/capita, lag, log</td>
<td>-0.1672*</td>
<td>-0.1707*</td>
<td>-0.1674*</td>
<td>-0.1777*</td>
<td>-0.1918*</td>
</tr>
<tr>
<td></td>
<td>(0.0727)</td>
<td>(0.0722)</td>
<td>(0.0726)</td>
<td>(0.0728)</td>
<td>(0.0756)</td>
</tr>
<tr>
<td>Population, lag, log</td>
<td>0.0827</td>
<td>0.0866</td>
<td>0.0989</td>
<td>0.1198</td>
<td>0.1386</td>
</tr>
<tr>
<td></td>
<td>(0.0895)</td>
<td>(0.0889)</td>
<td>(0.0937)</td>
<td>(0.0957)</td>
<td>(0.0969)</td>
</tr>
<tr>
<td>Constant</td>
<td>-5.7704**</td>
<td>-5.8275**</td>
<td>-5.9053**</td>
<td>-6.1146**</td>
<td>-6.2274**</td>
</tr>
<tr>
<td></td>
<td>(1.0971)</td>
<td>(1.0901)</td>
<td>(1.1246)</td>
<td>(1.1326)</td>
<td>(1.1281)</td>
</tr>
<tr>
<td>Observations</td>
<td>28302</td>
<td>28302</td>
<td>28298</td>
<td>28298</td>
<td>28298</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses; estimates for peace-year correction not shown

** p<0.01, * p<0.05
Figure 1. The ethno-nationalist triad
Figure 2. The probability of conflict as a function of relative TEK size
Figure 3. Conflict probability varying with size of included and excluded TEK groups
Endnotes

* An earlier version of this paper was presented at the Annual Meeting of the American Political Science Association, Seattle, September 2, 2011. We are grateful for the helpful comments by Stephen E. Gent and the editors and anonymous referees of this journal. Seraina Rüegger did a superb job managing the collection of the TEK data. Cederman and Salehyan acknowledge financial support from the Swiss Network of International Studies (SNIS). Gleditsch acknowledges support from the Research Council of Norway (1804410/V10).

1 See e.g. Salehyan and Gleditsch 2006; Gleditsch 2007.

2 King and Melvin 1999/2000, 109; see also Thyne 2007; Cederman, Girardin and Gleditsch 2009.

4 Van Houten 1998.

5 Weiner 1971.

7 See Davis and Moore 1997; Saideman 2001; Woodwell 2004.

8 Cetinyan 2002.

9 See e.g. Walter 2009; Reiter 2003.

10 Hegre et al. 2001.

12 Cederman, Girardin and Gleditsch 2009.

13 See Cederman, Girardin and Gleditsch 2009.

15 Van Houten 1998.

16 Fearon 1998.

17 Van Houten 1998, 112.

18 Van Houten 1998, 112.

19 Van Houten 1998, 119-120.

20 Weiner 1971.

21 Brubaker 1996.

22 See e.g. Shain and Barth 2003.
24 Salehyan 2009.
28 Goodwin 1997; Gurr 2000; Petersen 2002; Cederman, Wimmer and Min 2010.
29 Tilly 1978.
31 Emirbayer and Goldberg 2005.
33 Cederman, Buhaug and Rød 2009.
34 Holsti 1996, 127; see also Connor 1994.
38 Saideman and Ayres 2000; Cetinyan 2002.
40 Salehyan 2009.
42 See Reiter 2003.
44 Fearon 1995.
45 See e.g. Fearon 1995; 1998.
46 Walter 2009.
48 See e.g. Huth 1988.
49 Horowitz 1985; Cederman, Girardin and Gleditsch 2009.
51 Wimmer, Cederman and Min 2009.
52 The dataset is available at http://www.icr.ethz.ch/data.
In these cases, the autonomous group has no access to *national executive* power. Autonomous groups that are represented at the national level are coded as included.

Our team has started coding constructivist exceptions from the name-matching rule, but the coverage of this more refined coding is still only partial and we refrain from using it in this paper. However, using the existing partial corrections makes no substantive difference to the results reported here.

Gleditsch et al. 2002.

Wucherpfennig et al. 2012.

Note that there may be more than one TEK group. In such cases, K is the sum of the population of segments in all neighboring countries.

Note that the incumbent group can consist of several groups. In this case, I is computed as the sum of these groups’ population.

This result confirms Cederman, Wimmer and Min 2010.

Ayres and Saideman 2008.

Van Houten 1998.

See URL #.

Weiner 1971.

See e.g. Cederman, Girardin and Gleditsch 2009.